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Materials and Methods 

Data sources 

We included butterfly count data from three types of butterfly surveys (table S1). First, 

we used data from the North American Butterfly Association (NABA), which is the longest 

running volunteer-based systematic count of butterflies in the world (11). We included NABA 

“survey circle” data across the contiguous United States (U.S.); these data represent one or 

multiple trips that volunteers carry out in one or more locations within a 15-mile (24.1-km) 

diameter circle. All butterflies seen are identified and counted and counts across trips on the 

same day are summed. Total party minutes spent surveying are also summed across trips 

(representing the cumulative time spent across parties, not volunteers). Second, we used data 

from the Massachusetts Butterfly Club, which carries out organized field trips and records 

individuals’ reports across the state in which participants identify and record butterflies seen. 

Third, we included repeated transect data from a number of monitoring programs. Many of these 

programs employ “Pollard walks,” a standardized protocol in which an observer walks a 

systematic path, usually once a week, and counts all butterflies seen for each species (39) or for 

one or a few targeted species (hereafter, “targeted surveys”). A few programs employ distance-

based sampling, a repeated transect method similar to Pollard walks that accounts for the reduced 

probability of observing butterflies at greater distances (40). Large-scale and long-term Pollard 

walk datasets have been collected in an east-west transect across California (41), across Ohio and 

Illinois, and from 14 other regional programs, all represented in PollardBase 

(https://pollardbase.org). Some programs employing repeated transect methods report time spent 

by observers on each survey; others do not. We note that the choice of sampling locations is non-

random, and available data provide a biased representation of types of land use and climate (e.g., 

no surveys were established in parking lots).  

  

Data processing 

Data cleaning 

Each observation (“record”) consists of a butterfly species count, site identity (including 

latitude and longitude), and survey date; in many cases observations also include information 

about survey effort. Surveys represent unique sampling events, and typically consist of multiple 

records each representing the count of a different species seen on that survey. Sites generally 

represent unique locations that were visited for multiple survey events. For most programs 

employing repeated transect methods, site identity represents a specific route that was walked 

multiple times per year for many years. For NABA records, “sites” represent the unique 15-mile 

diameter circle; while generally the same circle was surveyed across multiple years, individual 

survey events could be based on trips located in different parts of the circle. 

We used latitude and longitude to identify US Fish and Wildlife Service regions 

associated with each observation and removed observations that were outside of the contiguous 

U.S. For one monitoring program (Texas Butterfly Monitoring Network), latitude and longitude 

were only provided at the county centroid level.  

In carrying out data validation, we identified and resolved issues in the data. Some 

programs report separate counts for each section of a survey, which leads to multiple records per 

survey for individual species. We summed these counts to create a single count per species per 

survey. Some surveys with the same site name were duplicated, but reported with different 

latitude and longitude values; generally the differences in latitude and longitude appeared to 

reflect differences in rounding decisions. We reconciled longitude and latitude and then removed 

duplicate surveys. Some surveys were duplicated but with different reported survey effort; we 



 

 

reconciled survey effort by averaging the “duration” or “party minutes” fields (see below), and 

then removed duplicate surveys. We also removed surveys reporting negative or 0 minutes spent 

observing, and surveys that reported more than 12 party-hours of surveying because both are 

likely errors. 

 

Harmonizing taxonomy 

Programs typically reported butterflies using scientific names, sometimes to the 

subspecies level. To integrate data across programs, we resolved taxonomic conflicts using the 

North American Butterfly Monitoring Network (NABMN) taxonomic framework (hereafter, 

“NABMN codes”). NABMN codes were updated when necessary to accommodate changes in 

both North American Butterfly Association's Checklist of North American Butterflies (42) and 

the Catalogue of the Butterflies of the U.S. and Canada (43). Subspecies were aggregated to the 

species level for our analyses, where species are defined using the NABMN framework. The 

NABMN framework recognizes four subspecies – Limenitis arthemis arthemis (white admiral), 

Limenitis arthemis astyanax (red-spotted purple), Lycaeides melissa samuelis (Karner blue), and 

Boloria improba acrocnema (Uncompahgre’ dingy fritillary) – which we analyzed at the species 

level for consistency with programs that did not identify to subspecies level. We also resolved a 

range of spelling inconsistencies across data sets.  

 

Integrating data structures  

Most programs use a presence-only reporting protocol in which, for any given monitoring 

event (e.g., observation trip or survey day), only species that are observed are recorded. 

Consequently, if a species was not recorded in a survey, we assume that it was not detected 

during that survey event, and we treated that as an observation with an “implicit” zero count for 

that species. For other programs (the Shapiro data set and targeted repeated transect counts), 

counts of zero are reported for species not seen. To recreate implicit zeroes when combining the 

data for our analysis, we had to overcome two challenges. First, implicit zeroes are only 

meaningful within the geographic range of the species of interest. For example, if we recreate 

implicit zeroes across the U.S. for a species found only in the state of Florida, the vast majority 

of the “data” for this species will be implicit zeroes in regions in which the butterfly would never 

be found. For this reason, we only incorporated implicit zeroes for monitoring events within the 

extent-of-occurrence polygons generated for each species. The estimated extent-of-occurrence 

polygons were generated by combining expert-drawn range maps (44) with environmental niche 

models (21). Second, in some cases observations were reported with identification above the 

species level (e.g., “unidentified in X genus” or “unidentified in X family”). In total, records with 

identification at the genus, subfamily, or family level represented only 2.7% of the total available 

data. However, in surveys that included such records, the absence of a species of interest from a 

survey might not truly correspond to zero individuals if an individual was observed but only 

identified to genus or family. We took a conservative approach and only created implicit zeroes 

for monitoring events in which the species of interest was not reported and there were no 

individuals identified above the species level that could have belonged to the species of interest.  

The extent-of-occurrence polygons did not use the same NABMN taxonomic classifications 

we used in our study, and at the time of analysis there were two taxa with points of conflict. 

Ochlodes yuma (the Yuma skipper) did not have a unique range map, and instead shared an 

extent-of-occurrence polygon with Ochlodes sylvanoides (the woodland skipper); we used the 

Ochlodes sylvanoides extent-of-occurrence polygon for both taxa. Phoebis statira (formerly 

Aphrissa statira; the statira sulphur) had two distinct extent-of-occurrence polygons associated 

with it, and we excluded this species from further analysis. 



 

 

 

Integrating measures of effort 

Effort was reported either as duration (in minutes, from single-observer repeated transect 

count programs) or total party minutes (from NABA). In some cases, effort was not reported but 

the same route was sampled every survey for a given site (for some Pollard-type programs). We 

accounted for duration and party minutes separately, as duration represents time spent by a single 

surveyor while party minutes represents time spent by one or more surveyors who could be 

surveying together. We also included a random site-level effect to account for variation across 

survey locations. For computational purposes, we normalized duration and party minutes 

separately to each have a mean of one. Observations without reported effort were presumed to 

have average effort (i.e., given an effort value of one after the normalization step). The 

Massachusetts Butterfly Club surveys did not report effort and did not resample the same sites, 

and thus we were not able to account for variation in effort across these surveys. 

 

Analysis overview 

 

We focused our study on evaluating changes in abundance between the years 2000 and 

2020 because 14 (40%) of the programs started data collection by 2000 and 88% of all available 

surveys were conducted on or after the year 2000 (figure S4D). In modeling trends in total 

butterfly abundance as well as trends for individual species, we worked with three distinct 

measures of trends, which we outline here and summarize in table S2. Fitted models directly 

estimated “regional rates of change” (i.e., growth rates, a common component of continuous 

time population ecology model) as coefficients. We further integrated regional rates of change 

and measures of relative abundance (“regional abundance index”, below and table S2) in each 

region to calculate “yearly-” and “overall rates of change”. Rates of change are the 

instantaneous rates of an exponential model (i.e., population growth rates), with negative values 

corresponding to decreasing trends and positive values corresponding to increasing trends. Rates 

of change are convenient mathematically but often not intuitive to interpret; we therefore focused 

on presenting “annual percent change,” which we calculated by exponentiating the 

corresponding rate of change (i.e., the annual percent change for a region was the exponentiation 

of the regional rate of change). The annual percent change is closely linked to the lambda growth 

parameter common in discrete-time population ecology models (e.g., a lambda of 1.1 = +10% 

annual increase, and a lambda of 0.85 = -15% annual decrease). For models with trends from 

more than one region, the yearly rate of change and annual percent change varied across years. 

We addressed this in two ways. First, our calculation of the overall rate of change accounted for 

variation across years, and the exponentiation of this term (the overall annual percent change) 

was equivalent to the geometric mean of each year’s annual percent change. Additionally, both 

for precision and to highlight the changes across the duration of our study, we calculated the 

“cumulative percent change.” This was an estimation of the total change in abundance we 

observed across the study period and was calculated by comparing model predictions from 2000 

to model predictions from 2020. 

 

Modeling trend in total butterfly abundance 

 

We estimated the change in total butterfly abundance by first summing all individuals 

counted in each survey (including individuals that were not identified to the species level) to 

create a single abundance count for each survey. We excluded targeted surveys (table S1) for this 

analysis as these overrepresent very rare butterflies that are targets of conservation efforts and 



 

 

intensive sampling. (However, we did include targeted surveys in species-level models – see 

below). Trends in butterfly abundance can have distinct regional patterns; therefore, we modeled 

separate regional trends and then integrated our estimates into a single trend for the contiguous 

U.S.. To account for spatial variation, we separated our data into the seven U.S. Fish and 

Wildlife Service Regions, relabeling “Pacific” to “Pacific Northwest” for clarity.  

We fit survey counts with a generalized additive model (GAM) to estimate trends in 

abundance for each region (20), using the package mgcv (45) in the programming language R 

(46). Our model included fixed effects for region, monitoring program, and region by year 

interaction (box 1). To account for variation in effort, we included separate fixed effects for party 

minutes and duration, using interactions with indicator variables to apply the associated 

coefficients only to observations that included reported party minutes or duration, respectively. 

To account for seasonal variation in activity – which could differ across regions – we included 

thin-plate regression spline smoothers across day of year for each region with the default 

maximum flexibility for smoothing splines in mgcv (k = 10), with a shared smoothing penalty 

(e.g., model S of 47: shared smoothing penalty, no global trend). To account for variation among 

sites and to capture site-associated effort of Pollard walks, we included site as a random effect. 

For computational efficiency and to improve model convergence, we pooled all sites with ten or 

fewer surveys into the same site identity. This arrangement meant the model did not attempt to 

estimate separate site coefficients for sparsely monitored sites, something that sometimes 

prevented model convergence. We modeled individual counts with a negative binomial 

distribution using a log link function and fit the model using fast REstricted Maximum 

Likelihood (fREM). For computational efficiency, we used the `bam` function of mgcv, an 

alternative to the `gam` function that is optimized for working with large data sets. 

To obtain regional rates of change, we relied on a convenient property of log-link models. 

Just as the natural logarithm of an exponential growth curve is a line, a linear term in a log-link 

model represents a relationship of exponential increase or decrease. The interaction of year and 

region in our model corresponds to separate exponential growth or decline estimates for each 

region; the estimated coefficients of the interaction and their uncertainty are the regional rates of 

change and their uncertainty. Note that our model represents regional trends as simple 

exponential growth or decline; see the section “Why only linear trends?” below for additional 

discussion. 

We calculated the yearly rate of change as the weighted average of regional rates of change, 

using the proportion of butterflies in each region for the weights. To determine the proportion of 

butterflies in each region, we calculated a metric of butterfly abundance that was comparable 

across years and regions. Because our model accounted for seasonal variation in butterfly 

abundance, there was no way to directly estimate a single value of butterfly abundance within a 

year. Instead, we calculated the “site-level abundance index” for a given year numerically using 

model predictions; we then scaled by geographic area to calculate the “regional abundance 

index” for that year, which we used as weights. We also summed regional abundance indices in 

each year to calculate the “yearly abundance index” for additional comparisons. Note that the 

proportion of butterflies in each region (i.e., relative values of regional abundance indices) 

changed across years; as time went on, the region with the highest growth rate had an increasing 

proportion of that year’s butterflies, leading to an increased yearly rate of change. 

To calculate our site-level abundance index for a single region and year, we calculated the 

area under the curve of predicted counts across a biologically relevant period of the year 

(“window of activity”). We defined the window of activity for a region by the quantile of 

surveys with non-zero counts across day of year (DOY): the window began at the DOY of the 

0.005 quantile and ended at the DOY of the 0.995 quantile. To obtain model predictions, we 



 

 

defined values for all variables included in the model. If held constant, variables other than year 

and region – effort, site, monitoring program – would not impact comparisons across years and 

regions but were still required values for the model to predict butterfly counts. We chose to use 

the NABA monitoring program, the average of site effect across time and space, and average 

effort for predictions. From the fitted model, we predicted butterfly counts at 0.1-day intervals 

across the window of activity for each region and each year and integrated the area under these 

predictions using the trapezoid method to produce a site-level abundance index. This index is 

analogous to estimated observable butterfly-days from models with average effort (e.g., 24). To 

calculate the regional abundance index, we multiplied the site-level abundance indices calculated 

for each region by the region’s area (in km2). Under the assumptions that: 1) all sites within a 

region are equally good indicators of butterfly activity within a year, 2) the entire region is well 

represented by monitoring sites, and 3) detection is constant across space and time, the 

abundance index is proportional to the total number of butterflies in each region. These 

assumptions are consistent with those required for similar analyses (e.g., 16). We calculated 

yearly abundance indices by summing regional abundance indices for each year (line in Fig. 1B), 

and we calculated the cumulative % change in abundance by comparing the yearly abundance 

indices of 2000 and 2020. We note that the regional and yearly abundance indices do not reflect 

absolute abundance but can be used as a relative measure of butterfly abundance and can be 

compared across years when calculated from the same fitted model. Because abundance indices 

are used for relative comparisons, rescaling the values by multiplying by a constant does not 

change any of our calculations or results. Thus, when plotting the abundance index in Fig. 1B, 

we divided by a constant to put the abundance indices on a similar scale to the average survey 

counts. 

Because there was no clear way to estimate uncertainty for changes in our yearly abundance 

index, we instead calculated and measured uncertainty for the overall rates of change and the 

annual percent change in abundance. Because the yearly rates of change (weighted average of 

regional rates of change, using as weights the regional abundance indices in each year) varied 

across years, we calculated the overall rate of change as the arithmetic mean of each of the 

estimated yearly rates of change from 2000 to 2020. Exponentiating this value gave an annual 

percent change that was equivalent to the geometric mean across annual percent changes. This is 

because the geometric mean 𝑋̅𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 of some variable X = x1, …, xn is equal to 𝑒E[log(𝑋)] and 

so the log of the geometric mean of X is the arithmetic mean of the log values of X. To 

determine the uncertainty for the overall rates of change, we extracted the standard error 

associated with regional rates of change from the fitted GAM model and propagated this 

uncertainty to yearly and overall rates of change using the delta method as implemented in the R 

package msm (48). In doing so, we assumed the covariance in propagated error between years 

was zero. We calculated annual percent changes in abundance by exponentiating the overall rate 

of change.  

Aggregating observations of butterflies of different species into a single count provided a 

useful estimate of the overall trend in butterfly abundance. However, this approach could mask 

the dynamics of most butterfly species if the most abundant species had unusual trends. We thus 

assessed the robustness of our overall trend estimate by repeating the above analyses after 

removing all data from the most common species in each region (greatest total count summed 

across sites and years). We obtained qualitatively similar results when fitting our model to these 

truncated data, with the exception of the regional estimate for the Pacific Northwest (table S4). 

In the Pacific Northwest, the most prevalent species was Nymphalis californica (California 



 

 

Tortoiseshell), a highly irruptive species which spiked in abundance within the region (and our 

data) in 2018 and 2019. See main text for full results.  

 

Modeling trends in individual species 

 

Species-level full model 

We estimated changes in abundance individually for 356 species with sufficient data (i.e., 

ten distinct years with non-zero counts and ≥30 total non-zero counts). For the 306 species that 

also had at least 10 unique sites with non-zero observations and at least 60 total surveys with 

non-zero counts in one or more regions, we estimated species trends regionally with the “full” 

model (table S3). For each species, we filtered our data to the extent-of-occurrence polygons 

calculated for that species (21) and imputed implicit zeros (see above) for all appropriate 

surveys. We then fit the same model used to estimate the trend in overall butterfly abundance 

with the following terms: fixed effects of region, region by year interaction, monitoring program, 

thin plate regression smoother across day of year for each region, fixed effects of duration and 

party minutes interacting with indicator variables, and random effect of site (box 1). Because 

these models involved less data than the total abundance model, we were able to treat more sites 

independently, and only pooled sites with two or fewer surveys into the same site identity. For 

some species we had data for only a single region, a single monitoring program, or a single (or 

no) effort type (duration or party minutes) reported. In those cases, we simplified the model 

accordingly. 

For computational reasons, we fit models with 6,000 or more observations using the `bam` 

function with the fREML method; for species with fewer data points we instead fit using `gam` 

with REstricted Maximum Likelihood (REML). In a few cases, individual species did not 

converge under the above treatment, and either required the use of `gam` instead of `bam` or 

required additional data filtering to ensure model convergence. This amended approach was 

generally necessary when one or more monitoring programs were present but very poorly 

represented in the data, having no or very few non-zero counts. Additional filtering was 

necessary for model convergence for 10 species (table S5). For 10 species, the model fitting 

process failed to reach convergence for the smoothing penalty, resulting in a warning. This may 

reflect that the smoothing term required additional maximum flexibility (more knots) for optimal 

fitting. However, the smoothing term did not directly contribute to our estimation of rates of 

change or changes in abundance index, and we chose to use a consistent modeling framework 

(including smoother flexibility) across all species. Thus, we retained these 10 species for all 

analyses. 

We calculated site-level, regional, and yearly abundance indices using the same methods as 

in our model of trends in total butterfly abundance, with a few exceptions. A few species were 

not observed in NABA circle counts, and we used a different monitoring program as the baseline 

when calculating abundance indices. Because the baseline monitoring program was the same 

when producing predictions across years and regions for a given species, the choice of 

monitoring program did not change the relative values of our abundance indices. To calculate the 

regional abundance index from the site-level abundance indices for individual species, instead of 

multiplying by the total area in the region, we multiplied by the total area (in km2) of the extent-

of-occurrence polygons for that species in the corresponding regions. Yearly abundance indices 

were the sum of regional abundance indices of that year; as with the trends in the total butterfly 

abundance model, we calculated the cumulative percent change in abundance by comparing the 

yearly abundance indices of 2020 and 2000. Regional and annual abundance indices are 

comparable among regions and years within species, but do not represent absolute abundances of 



 

 

butterflies and are not comparable across species. However, proportional changes in abundance 

(e.g., cumulative percent changes) are comparable across species (table S5). 

We calculated species-level overall rates of change and annual percent change in abundance 

using the same methods as in the total butterfly abundance model. For species present in only 

one region, the regional rate of change extracted from the GAM model was simply the overall 

rate of change. 

 

Species-level simplified model 

Several species (50 species) had insufficient data to meet our criterion for the full model 

with regional-level analysis, but still had ten or more unique years with non-zero counts and 30 

or more surveys with non-zero counts (table S3). Often these were rare or at-risk species that 

were heavily surveyed in only a few locations. Generally, these species had very small ranges, 

which precluded the need to account for regional variation. We fit data for these species with a 

simplified model identical to the species-level full model described above, except (a) we 

included a single smoother across day of year instead of one per region, and (b) we included a 

main effect of year instead of a year by region interaction (box 1). As with the full model, we fit 

species with 6,000 or more observations using `bam` with fREML, using `gam` with REML for 

all others. Several species with more than 6,000 observations required the use of `gam` to ensure 

convergence and three species required additional data filtering to ensure model convergence 

(table S5). For two species, model fitting failed to converge for the smoothing penalty, 

suggesting the smooth term may have been insufficiently flexible. As with the species-level full 

model, we chose to use a consistent modeling framework rather than customize model flexibility 

for individual species, and we report results for these two species and include them in further 

analyses. We calculated the abundance indices, rates of change, annual percent change, and 

cumulative percent change as above; because the species-level simplified model fits a single 

effect of year, we extracted overall rate of change and associated uncertainty directly from the 

model (i.e., the same method as the species-level full model for species present in only one 

region). 

 

Expert review of population trends 

After calculation of population trends, each species was reviewed by at least two experts 

from among the authors (T. Wepprich, Oregon Department of Forestry, Salem, OR also served 

as an expert for some species). Species were flagged for incongruence with trends available from 

external sources or if visual inspection found that 1-3 individual survey events appeared to drive 

an estimated trend which was not representative of most observations. Fourteen species were 

removed at this step: Amblyscirtes belli (Bell's Roadside-Skipper), Amblyscirtes elissa (Elissa 

Roadside-Skipper), Amblyscirtes texanae (Texas Roadside-Skipper), Boloria chariclea (Arctic 

Fritillary), Callophrys polios (Hoary Elfin), Chlosyne acastus (Sagebrush Checkerspot), 

Cymaenes tripunctus (Three-spotted Skipper), Heliopetes laviana (Laviana White-Skipper), 

Hesperia metea (Cobweb Skipper), Nastra neamathla (Neamathla Skipper), Neominois ridingsii 

(Ridings' Satyr), Poanes aaroni (Aaron's Skipper), Problema bulenta (Rare Skipper), and 

Siproeta stelenes (Malachite) After removing these species, we were left with 301 species fit 

with the species-level full model, and 41 species fit the species-level simplified model; we used 

these 342 species in all further analyses. 

 

Richness calculation 

We created a richness index to represent the number of species that could reasonably be 

found in each region. From each of the 301species for which we had sufficient data to fit 



 

 

separate regional trends and for which NABA counts could be predicted, we used the species-

level full model (see previous section) to predict counts for a NABA survey with average effort 

at an average site on the day of year with highest activity for that species. If the predicted count 

was ≥1, we considered the species ‘likely observable’. We then calculated species richness as the 

total number of likely observable species in the region-year of interest. Uncertainty in these 

richness estimates was not calculated. 

 

Why only linear trends? 

The models we employed captured only exponential increases or decreases in each region 

(i.e., linear trends on a log scale). Where possible, ecologists – including many of the authors 

here – seek to fit population models with greater flexibility. Models that incorporate 

nonlinearities can provide key insights into population behavior, especially in the context of 

changing environmental drivers like climate, pesticide use, land use, and habitat management. 

We initially explored a range of model options for this study, and eventually recognized it was 

not feasible to capture non-linear trends using a general framework that would produce 

comparable estimates across species. Species varied greatly in their number of 

detections/observations within the data, with many not having sufficient data to support more 

complex models. Modeling nonlinear trends would have required either removing hundreds of 

species or fitting a series of models with differing levels of complexity, limiting our ability to 

make comparisons across species. In using different model structures, any estimated differences 

in trends across species could have been due to true biological processes, or simply to the 

differing constraints of the various model structures. This issue is compounded by data 

availability differences among regions for individual species, such that some species would 

require different model structures for each region. Although incorporating a flexible structure in 

our models would have been ideal, the inclusion of nonlinear trends increases the complexity 

(e.g., calculating uncertainty in estimates) and likelihood of errors (e.g., achieving model 

convergence) while simultaneously complicating the process of expert validation. Future work 

should consider the possibility of incorporating nonlinear trends into butterfly analyses as 

additional data becomes available. 

 

Post-hoc analyses 

False discovery rate correction 

 By fitting separate models to hundreds of species and reporting individual P-values, we 

increased the likelihood of encountering false positives (species for which an apparently 

significant non-zero trend was in fact not significant). Because of our low statistical power, we 

focus on reporting the exact P-values in main text. However, we also calculated corrected P-

values based on the false discovery rate correction method of (49). We found that 87 species had 

significant overall trends at the P < 0.05 level using the more stringent P-value calculations 

compared with 123 species reported in the main text (table S5). We further found that the ratio of 

declining to increasing species was similar, 79 declining and 8 increasing species (9.9:1 ratio) 

using the more stringent P-value calculations compared to 114 declining and 9 increasing species 

(12.7:1 ratio) reported in the main text.  

 

Regional comparisons 

Several studies have found Northern hemisphere species have higher population growth 

rates at the northern edge of their range compared to the southern edge, consistent with a 

warming climate and latitudinal variation in thermal constraints (14, 22). To test for this pattern 

within our data, we identified pairs of regions adjacent to one another along a north-south 



 

 

gradient: Southeast and Northeast regions, Southeast and Midwest regions, Southwest and 

Mountain Prairie regions, and Pacific Southwest and Pacific Northwest regions (Fig. 1). For each 

region-pair, we used only species present in both regions. We fit linear regression models, using 

species’ estimated regional rates of change as the response variable and including as predictors a 

fixed effect for region geography (north vs south) and a fixed effect of species identity. We 

weighted each observation (i.e., each species-region) by the precision matrix (inverse of the 

variance-covariance matrix) of the regional rates of change to account for uncertainty. We 

included a fixed effect of species in this model to create a paired t-test; this approach is possible 

because we only included species with growth rates in both regions. We fit each region pair this 

way and tested for significant differences using marginal hypothesis testing as implemented in 

the R package car (50). 

 

Trait association 

We hypothesized seven key traits might be associated with butterfly population trends: 1) 

body size (wingspan in cm), 2) degree of host-plant specialization, 3) voltinism, 4) life stage of 

overwintering individuals, 5) affinity for moist habitats, 6) association with human-dominated 

habitats, and 7) affiliation with different types of canopies. Larger butterflies have sometimes 

been found to have more negative or downward-trending population trends relative to smaller 

butterflies (1); conversely, larger butterflies are often more mobile, which may allow them to 

move in response to climate change or other disturbances (51-52). Butterflies that are specialists 

on one or a small number of food plants are generally expected to be less resilient to variable 

environments (53), and butterflies that are host plant specialists have experienced more negative 

population trends (54). At-risk butterfly species are disproportionately univoltine (one generation 

per year) (12), and multivoltinism (more than one generation per year) has sometimes been 

associated with greater population trends (14); we expected multivoltine species to have higher 

trends than univoltine species. Species that overwinter as eggs have been more vulnerable to 

declines in regional studies (12, 55). Dry regions and dry years have previously been associated 

with more negative butterfly population trends (16-17, 56), and we expected species with lower 

moisture affinity to have more negative population trends. Given the ongoing restructuring of 

natural habitats in the Anthropocene (6), we expected species with higher affinity for human-

dominated habitats to have higher population growth rates. Species of different canopy 

affiliations may be more or less vulnerable to habitat loss according to regional land cover 

changes, and canopy generalists are expected to be less likely to show declines than canopy 

specialists. 

We obtained wingspan, voltinism, diapause stage, host plant specialization, and habitat 

affinities from LepTraits 1.0, a database of global butterfly traits (57). When the LepTraits 1.0 

species consensus trait indicated variation, we referenced source records from North American 

field guides to simplify trait codes. Similarly, we extracted additional trait records from North 

American field guides to fill gaps from LepTraits 1.0. We defined host-plant specialists as 

species that feed on no more than one plant family. Ordinal designations for habitat affinity were 

translated to a +2 to -2 integer scale based on the strength and direction of a species’ association 

with mesic habitats, disturbance, canopy cover, and canopy specialization (“Very strong” = 2 or -

2; “weak” = 1 or -1; “both”, “varies”, and “no evidence” = 0) .  

We conducted post-hoc analyses relating species overall rates of change to species-level 

traits. We used weighted linear models with species rates of change as the response variable and 

individual species traits as predictors in separate models, weighted by the precision matrix of 

species rates of change. We then evaluated the support for traits as predictors of rates of change 

using marginal hypothesis testing (table S6). In the case of canopy affinity, which was 



 

 

represented by two variables, we included both in the same model. In the cases of voltinism and 

overwintering stage, our model identified the traits as a significant predictor, but each trait was 

made up of categorical variables. We report the significance of the marginal hypothesis testing, 

and then present the qualitative findings of post hoc comparisons implemented using the R 

package emmeans (58). We also fit a model with all trait terms to identify the maximum possible 

variation in rates of change explained by traits; this model included traits that were not 

significant predictors of growth rate, and thus may overestimate the variation explained by traits.  

 

Phylogenetically corrected trait association 

Phylogenetic regressions are sometimes used instead of conventional regression models 

because species are not independent, as closely related species tend to have common traits (59). 

We repeated our trait analysis using phylogenetic regression models. Species trends and traits 

were mapped onto a phylogeny of North American butterflies (60). Of the species for which we 

estimated species-specific rates of change, 97% were present in this phylogeny and thus could be 

included in this analysis. For each trait, we used the `pgls.SEy` function (61) in the ‘phytools’ 

package (62) to generate both a null model with no predictors for growth rate and a model with 

the given trait as a predictor for growth rate. The `pgls.SEy` function allows the inclusion of 

estimated error in the response variable; we included the estimated error associated with species 

rates of change. For each trait, the null model and trait model were fit only to the data for which 

that trait was known. For each trait, we compared the two models using AIC; as the null model 

was always the better fit, we did not pursue further statistical tests (table S8). 

 

Software 

All analyses were performed in R 4.2.2 (46). We used the following key packages: the 

tidyverse suite (63) to process data; mgcv (45) to fit GAMs; msm (48) to implement the delta 

method; sf (64), sp (65), rgdal (66) and terra (67) to carry out spatial data processing; car (50) for 

marginal hypothesis testing; emmeans (58) for post hoc comparisons; phylolm (68), phytools 

(62), and ape (69) for phylogenetically corrected trait association analyses; tidyterra (70), 

ggplot2 (71) and patchwork (72) to generate figures. Spatial data processing implemented in the 

rgdal package used the open-source software GDAL (73).  
  



 

 

BOX 1 

 

 

To calculate trends in total butterfly abundance and the abundance for most individual 

species (the “species-level full model”), we estimated rates of change in each region, as well as 

terms to account for seasonality of activity (e.g., phenology), differences across regions, 

monitoring programs, sites, and differences in survey effort. 

We used a negative binomial model:  

 

𝑐𝑜𝑢𝑛𝑡𝑗,𝑘,𝑡 ~ 𝑁𝐵(𝜇𝑗,𝑘,𝑡, 𝜃) 

 

in which the count (for either a species or all butterflies) at location j on day of year k and year t 

comes from a negative binomial distribution with a mean 𝜇𝑗,𝑘,𝑡 and an overdispersion parameter 

𝜃. We estimated the mean using a log-link function: 

 

𝑙𝑜𝑔(𝜇𝑗,𝑘,𝑡) =  𝑓𝑟𝑒𝑔𝑖𝑜𝑛(𝐷𝑂𝑌) +  𝛽𝑟  ×  𝑟𝑒𝑔𝑖𝑜𝑛𝑗 + 𝛽𝑟,𝑡  × 𝑟𝑒𝑔𝑖𝑜𝑛𝑗  × 𝑦𝑒𝑎𝑟𝑡 + 𝛽𝑝 × 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑗

+  𝛽𝑒𝑑 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑘,𝑡 × 𝐼𝑑 + 𝛽𝑝𝑚 × 𝑝𝑎𝑟𝑡𝑦𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑗,𝑘,𝑡 × 𝐼𝑝𝑚 + 𝜖𝑠 

 

where 𝑓𝑟𝑒𝑔𝑖𝑜𝑛 is the smoother for seasonality for the given region, DOY is the day of year (from 

1 to 366), duration and partyminutes are the two possible reported measures of survey effort, Id 

and Ipm are indicator variables to identify observations in which effort was reported as duration 

or party minutes respectively, and 𝜖𝑠 is a random effect of survey site. In the programming 

language R, we write this model as: 

 
bam(count ~ -1 + s(doy, by = region, bs = "tp", k = 10) 

+ region + year:region +  program + duration:Id 

+ partyminutes:Ipm + s(site, bs = "re"), family = "nb") 

 

For those species with sparse data (“species-level simplified model”), we simplified the 

model by removing the region terms to produce a single range-wide model: 

 

𝑙𝑜𝑔(𝜇𝑗,𝑘,𝑡) =  𝑓(𝐷𝑂𝑌) +  𝛽𝑡  × 𝑦𝑒𝑎𝑟𝑡 +  𝛽𝑝 × 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑗 + 𝛽𝑒𝑑 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑗,𝑘,𝑡 × 𝐼𝑑 + 𝛽𝑝𝑚 ×

𝑝𝑎𝑟𝑡𝑦𝑚𝑖𝑛𝑢𝑡𝑒𝑠𝑗,𝑘,𝑡 × 𝐼𝑝𝑚 + 𝜖𝑠.   

 

In the programming language R, we write this model as: 

 
bam(count ~ s(doy, bs = "tp", k = 10) + year + program + 

duration:Id + partyminutes:Ipm +  

            s(site, bs = "re"), family = "nb") 

 
  



 

 

Figure S1. Outline of our modeling process. (A) For each of our models, we fit survey counts with generalized 

additive models (GAMs), from which we calculated regional abundance indices and regional rates of change. We 

then used these values to calculate annual percent change at the regional and national level and cumulative percent 

change. This process was simplified for species-level models when the species was present in only one region and in 

cases when species data were limited. (B) Regional abundance indices were calculated using the site-level 

abundance indices scaled by the area of the range in each region (species models) or the area of each region (total 

butterfly abundance). (C) We report trends from three types of models: total butterfly abundance, species-level full 

model (301 species), and species-level simplified model (41 species). We identified regional trends in richness using 

only species-level full models. We used the results from all the species-level models for post-hoc analyses to 

identify regional differences in trends and the associations between trends and species traits. 

 
  



 

 

Figure S2. Phenology curves for six species. Examples of the fitted smooths included in species-level models to 

control for the seasonality of butterfly activity. Black curve shows the fitted model; rugplot along the x axis shows 

density of surveys. (A-C) The smooths for the three species with the highest growth rates among those species 

identified as increasing; (D-F) the smooths for the three species with the most negative growth rates among those 

species identified as declining. Smooth shape represents a balance between biology and statistical limitations: 

Poanes melane shows clear bimodal activity curve reflective of its two generations per year, while Appias drusilla 

data was so sparse that there was insufficient support for a less linear curve. In the limiting case, sparse data would 

produce a completely linear phenology term, as was used to control for phenology in (16). The smooths used to 

account for phenology did not vary across years. 

 

  



 

 

Figure S3. Butterfly monitoring varied by region and time. Bars show the number of surveys in each region 

(columns) and each time period (rows; 5-6 years), binned by week. Note the difference in y scales: the Midwest 

region is home to several of the largest monitoring programs and had substantially more surveys than any other 

region.  

 

  



 

 

Figure S4: Common threats to butterflies have increased for the past century while the preponderance of 

butterfly monitoring data is available only within the past two decades. (A) Pounds of agricultural pesticide 

active ingredient reported in the US for 21 selected crops (74). (B) Temperature anomalies in the U.S., measuring 

the difference in degrees Fahrenheit between yearly mean temperature and the average from 1901-2000 (75). (C) 

Change in land use measured by percent of grassland lost since 1850 (76). (D) Number of butterfly surveys available 

per year from the 35 monitoring programs used in this study. Dotted line shows the year 2000, the first year of our 

analysis; threats in A-C had already reached elevated severity at that time. 

  



 

 

Figure S5. Histogram of species rates of changes in abundance over the study period (2000-2020), shown on a 

linear scale. Species with rates of change that significantly differed from zero (P < 0.05) are labeled “declining” 

(114 species) and “increasing” (9 species), respectively; remaining species that changed by at least +/-10% from 

2000 to 2020 were labeled as “possibly declining” and “possibly increasing”. The median species declined in 

abundance by 41.5% across the study period. This figure is an alternative to Fig. 2, which presents the histogram on 

the log scale. Because declines are bounded at -100% while increases have no bounds, the log scale allows for easier 

interpretation of the bulk of the data.  

 
  



 

 

Table S1.  

Summary of data sources. Detailed information on each `Monitoring program` that contributed data to our study. 

`Data label` denotes the label used in the data files (the `source` column) if it differs from the listed monitoring 

program. `Data collectors` distinguishes data collected by career scientists (“Researcher(s)”) or by volunteers 

(“Volunteer scientists”). `Targeted` identifies programs that recorded only individuals from one or a few target 

species (“yes”) versus programs that recorded all butterflies seen (“no”). In `Monitoring approach`, “repeated 

transect” refers both to Pollard-walks and more elaborate transect methods, such as distance sampling; for details on 

circle counts and field trips, see 19. `Number surveys` lists all surveys available from the data sources in the 

contiguous U.S. for the study period (2000 to 2020). 

 

Table S2. 

Summary of key analysis terms. The estimated abundance indices are metrics of relative abundance for a species 

(or total butterfly abundance). These indices are comparable within a model (e.g., to evaluate a species’ trend), but 

not across models (e.g., to compare abundance between two species in a given year). 

 

Table S3. 

Data used to fit species-level models. A summary of the volume of data available for each species included in our 

analyses. “# surveys (direct observation)” provides number of non-implicit records used in model fitting; “# surveys 

(implicit zeroes)” provides the number of implicit records used, and “% implicit zeroes” gives the percent of data 

used that were implicit zeroes. “# sites” gives the number of unique sites in the data used, # monitoring programs 

gives the number of monitoring programs represented in the data used (see table S1), and “Total butterflies seen” 

shows the sum of counts across all observations used. 

 

Table S4. 

Trends in total butterfly abundance for each region. Comparison of trends in overall butterfly abundance as 

estimated in the main manuscript (“original”) to an identical model fit to data in which the most abundant species 

was removed from each region (“without most common”). “Total” row represents the total changes for the 

contiguous U.S. 

 

Table S5. 

Abundance trends for each of the 342 species that were estimated using species-level models. `Trend` is defined 

as in Figs. 2 and 4: species with rates of change that significantly differed from zero (P < 0.05) are labeled 

“declining” (82 species) and “increasing” (8 species), respectively; remaining species that changed by at least +/-

10% from 2000 to 2020 are labeled as “possibly declining” and “possibly increasing”. `Estimate` reports the rate of 

change, which is the natural log of the annual per capita growth rate (i.e., the population growth rate). `SE` is the 

standard error associated with the estimated rate of change. `95% CI` is the 95% confidence interval of the rate of 

change as calculated from the estimate and standard error. `Pval` provides the P-value associated with the rate of 

change, either calculated directly from the model (species-level simplified model, species-level full model for 

species present in a single region) or based on the estimate and standard error. `Adjusted Pval` gives P-value after 

correcting for the false discovery rate. `Type of model` distinguished species for which we fit separate trends for 

each region (“full”) and species for which we fit a single trend (“simplified”). `mgcv method` identifies the function 

used to fit each species. The final columns identify species that required additional data filtering for model 

convergence and cases when the fitted model provided a warning about the estimation of the smoothing penalty. The 

smoothing penalty only impacts estimated seasonality of activity (phenology) and not trend estimates. 

 

  



 

 

Table S6. 

List of species trends by butterfly family. Percent of species in each family that are declining, stable, and 

increasing. Species with rates of change that significantly differed from zero (P < 0.05) are labeled “declining” (81 

species) and “increasing” (8 species), respectively; remaining species that changed by at least +/-10% from 2000 to 

2020 were labeled as “possibly declining” and “possibly increasing”. “Little change” reports the species with 

estimated cumulative change between -10% and +10%. Parentheses show the number of species. 

 

Table S7. 

Summary of trait analyses. Results of marginal hypothesis testing (`Anova()` from the car package; 50) of linear 

mixed models that included family as a random effect and weighted species rates of change by the inverse of the 

associated uncertainty. For categorical traits, we present coefficient estimates for each category calculated using the 

emmeans package (58), and list all pairwise contrasts with P < 0.1 calculated using the Tukey method. 

 

Table S8. 

Summary of phylogenetically-corrected trait analyses. Statistics comparing a null model that includes only 

phylogeny with a model including phylogeny and the specified trait, weighting species by the precision matrix of 

estimated rates of change. The number of species included in each pair of models differs due to available trait data. 

In all cases the null model had the best support, with ‘dAIC’ reporting the difference in AIC between the null and 

trait models.  

 

Table S9. 

Comprehensive list of species regional trends for the 319 species fit with the species-level full model. Columns 

are defined as in Table S5, with trend, rate of change and cumulative change now referring to estimates for 

individual regions rather than the overall U.S estimate.  

 

Table S10. 

Number of surveys for each study year (2000-2020). The number of surveys used, across all available monitoring 

programs, in the trend model to estimate changes in total butterfly abundance and to generate Figure 1B. 
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