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Materials and Methods

Data sources

We included butterfly count data from three types of butterfly surveys (table S1). First,
we used data from the North American Butterfly Association (NABA), which is the longest
running volunteer-based systematic count of butterflies in the world (11). We included NABA
“survey circle” data across the contiguous United States (U.S.); these data represent one or
multiple trips that volunteers carry out in one or more locations within a 15-mile (24.1-km)
diameter circle. All butterflies seen are identified and counted and counts across trips on the
same day are summed. Total party minutes spent surveying are also summed across trips
(representing the cumulative time spent across parties, not volunteers). Second, we used data
from the Massachusetts Butterfly Club, which carries out organized field trips and records
individuals’ reports across the state in which participants identify and record butterflies seen.
Third, we included repeated transect data from a number of monitoring programs. Many of these
programs employ “Pollard walks,” a standardized protocol in which an observer walks a
systematic path, usually once a week, and counts all butterflies seen for each species (39) or for
one or a few targeted species (hereafter, “targeted surveys”). A few programs employ distance-
based sampling, a repeated transect method similar to Pollard walks that accounts for the reduced
probability of observing butterflies at greater distances (40). Large-scale and long-term Pollard
walk datasets have been collected in an east-west transect across California (41), across Ohio and
Illinois, and from 14 other regional programs, all represented in PollardBase
(https://pollardbase.org). Some programs employing repeated transect methods report time spent
by observers on each survey; others do not. We note that the choice of sampling locations is non-
random, and available data provide a biased representation of types of land use and climate (e.qg.,
no surveys were established in parking lots).

Data processing
Data cleaning

Each observation (“record”) consists of a butterfly species count, site identity (including
latitude and longitude), and survey date; in many cases observations also include information
about survey effort. Surveys represent unique sampling events, and typically consist of multiple
records each representing the count of a different species seen on that survey. Sites generally
represent unique locations that were visited for multiple survey events. For most programs
employing repeated transect methods, site identity represents a specific route that was walked
multiple times per year for many years. For NABA records, “sites” represent the unique 15-mile
diameter circle; while generally the same circle was surveyed across multiple years, individual
survey events could be based on trips located in different parts of the circle.

We used latitude and longitude to identify US Fish and Wildlife Service regions
associated with each observation and removed observations that were outside of the contiguous
U.S. For one monitoring program (Texas Butterfly Monitoring Network), latitude and longitude
were only provided at the county centroid level.

In carrying out data validation, we identified and resolved issues in the data. Some
programs report separate counts for each section of a survey, which leads to multiple records per
survey for individual species. We summed these counts to create a single count per species per
survey. Some surveys with the same site name were duplicated, but reported with different
latitude and longitude values; generally the differences in latitude and longitude appeared to
reflect differences in rounding decisions. We reconciled longitude and latitude and then removed
duplicate surveys. Some surveys were duplicated but with different reported survey effort; we




reconciled survey effort by averaging the “duration” or “party minutes” fields (see below), and
then removed duplicate surveys. We also removed surveys reporting negative or 0 minutes spent
observing, and surveys that reported more than 12 party-hours of surveying because both are
likely errors.

Harmonizing taxonomy

Programs typically reported butterflies using scientific names, sometimes to the
subspecies level. To integrate data across programs, we resolved taxonomic conflicts using the
North American Butterfly Monitoring Network (NABMN) taxonomic framework (hereafter,
“NABMN codes””). NABMN codes were updated when necessary to accommodate changes in
both North American Butterfly Association's Checklist of North American Butterflies (42) and
the Catalogue of the Butterflies of the U.S. and Canada (43). Subspecies were aggregated to the
species level for our analyses, where species are defined using the NABMN framework. The
NABMN framework recognizes four subspecies — Limenitis arthemis arthemis (white admiral),
Limenitis arthemis astyanax (red-spotted purple), Lycaeides melissa samuelis (Karner blue), and
Boloria improba acrocnema (Uncompahgre’ dingy fritillary) — which we analyzed at the species
level for consistency with programs that did not identify to subspecies level. We also resolved a
range of spelling inconsistencies across data sets.

Integrating data structures

Most programs use a presence-only reporting protocol in which, for any given monitoring
event (e.g., observation trip or survey day), only species that are observed are recorded.
Consequently, if a species was not recorded in a survey, we assume that it was not detected
during that survey event, and we treated that as an observation with an “implicit” zero count for
that species. For other programs (the Shapiro data set and targeted repeated transect counts),
counts of zero are reported for species not seen. To recreate implicit zeroes when combining the
data for our analysis, we had to overcome two challenges. First, implicit zeroes are only
meaningful within the geographic range of the species of interest. For example, if we recreate
implicit zeroes across the U.S. for a species found only in the state of Florida, the vast majority
of the “data” for this species will be implicit zeroes in regions in which the butterfly would never
be found. For this reason, we only incorporated implicit zeroes for monitoring events within the
extent-of-occurrence polygons generated for each species. The estimated extent-of-occurrence
polygons were generated by combining expert-drawn range maps (44) with environmental niche
models (21). Second, in some cases observations were reported with identification above the
species level (e.g., “unidentified in X genus” or “unidentified in X family”). In total, records with
identification at the genus, subfamily, or family level represented only 2.7% of the total available
data. However, in surveys that included such records, the absence of a species of interest from a
survey might not truly correspond to zero individuals if an individual was observed but only
identified to genus or family. We took a conservative approach and only created implicit zeroes
for monitoring events in which the species of interest was not reported and there were no
individuals identified above the species level that could have belonged to the species of interest.

The extent-of-occurrence polygons did not use the same NABMN taxonomic classifications
we used in our study, and at the time of analysis there were two taxa with points of conflict.
Ochlodes yuma (the Yuma skipper) did not have a unique range map, and instead shared an
extent-of-occurrence polygon with Ochlodes sylvanoides (the woodland skipper); we used the
Ochlodes sylvanoides extent-of-occurrence polygon for both taxa. Phoebis statira (formerly
Aphrissa statira; the statira sulphur) had two distinct extent-of-occurrence polygons associated
with it, and we excluded this species from further analysis.



Integrating measures of effort

Effort was reported either as duration (in minutes, from single-observer repeated transect
count programs) or total party minutes (from NABA). In some cases, effort was not reported but
the same route was sampled every survey for a given site (for some Pollard-type programs). We
accounted for duration and party minutes separately, as duration represents time spent by a single
surveyor while party minutes represents time spent by one or more surveyors who could be
surveying together. We also included a random site-level effect to account for variation across
survey locations. For computational purposes, we normalized duration and party minutes
separately to each have a mean of one. Observations without reported effort were presumed to
have average effort (i.e., given an effort value of one after the normalization step). The
Massachusetts Butterfly Club surveys did not report effort and did not resample the same sites,
and thus we were not able to account for variation in effort across these surveys.

Analysis overview

We focused our study on evaluating changes in abundance between the years 2000 and
2020 because 14 (40%) of the programs started data collection by 2000 and 88% of all available
surveys were conducted on or after the year 2000 (figure S4D). In modeling trends in total
butterfly abundance as well as trends for individual species, we worked with three distinct
measures of trends, which we outline here and summarize in table S2. Fitted models directly
estimated “regional rates of change” (i.e., growth rates, a common component of continuous
time population ecology model) as coefficients. We further integrated regional rates of change
and measures of relative abundance (“regional abundance index”, below and table S2) in each
region to calculate “yearly-” and “overall rates of change”. Rates of change are the
instantaneous rates of an exponential model (i.e., population growth rates), with negative values
corresponding to decreasing trends and positive values corresponding to increasing trends. Rates
of change are convenient mathematically but often not intuitive to interpret; we therefore focused
on presenting “annual percent change,” which we calculated by exponentiating the
corresponding rate of change (i.e., the annual percent change for a region was the exponentiation
of the regional rate of change). The annual percent change is closely linked to the lambda growth
parameter common in discrete-time population ecology models (e.g., a lambda of 1.1 = +10%
annual increase, and a lambda of 0.85 = -15% annual decrease). For models with trends from
more than one region, the yearly rate of change and annual percent change varied across years.
We addressed this in two ways. First, our calculation of the overall rate of change accounted for
variation across years, and the exponentiation of this term (the overall annual percent change)
was equivalent to the geometric mean of each year’s annual percent change. Additionally, both
for precision and to highlight the changes across the duration of our study, we calculated the
“cumulative percent change.” This was an estimation of the total change in abundance we
observed across the study period and was calculated by comparing model predictions from 2000
to model predictions from 2020.

Modeling trend in total butterfly abundance

We estimated the change in total butterfly abundance by first summing all individuals
counted in each survey (including individuals that were not identified to the species level) to
create a single abundance count for each survey. We excluded targeted surveys (table S1) for this
analysis as these overrepresent very rare butterflies that are targets of conservation efforts and



intensive sampling. (However, we did include targeted surveys in species-level models — see
below). Trends in butterfly abundance can have distinct regional patterns; therefore, we modeled
separate regional trends and then integrated our estimates into a single trend for the contiguous
U.S.. To account for spatial variation, we separated our data into the seven U.S. Fish and
Wildlife Service Regions, relabeling “Pacific” to “Pacific Northwest” for clarity.

We fit survey counts with a generalized additive model (GAM) to estimate trends in
abundance for each region (20), using the package mgcv (45) in the programming language R
(46). Our model included fixed effects for region, monitoring program, and region by year
interaction (box 1). To account for variation in effort, we included separate fixed effects for party
minutes and duration, using interactions with indicator variables to apply the associated
coefficients only to observations that included reported party minutes or duration, respectively.
To account for seasonal variation in activity — which could differ across regions — we included
thin-plate regression spline smoothers across day of year for each region with the default
maximum flexibility for smoothing splines in mgcv (k = 10), with a shared smoothing penalty
(e.g., model S of 47: shared smoothing penalty, no global trend). To account for variation among
sites and to capture site-associated effort of Pollard walks, we included site as a random effect.
For computational efficiency and to improve model convergence, we pooled all sites with ten or
fewer surveys into the same site identity. This arrangement meant the model did not attempt to
estimate separate site coefficients for sparsely monitored sites, something that sometimes
prevented model convergence. We modeled individual counts with a negative binomial
distribution using a log link function and fit the model using fast REstricted Maximum
Likelihood (fREM). For computational efficiency, we used the "bam’ function of mgcv, an
alternative to the "gam" function that is optimized for working with large data sets.

To obtain regional rates of change, we relied on a convenient property of log-link models.
Just as the natural logarithm of an exponential growth curve is a line, a linear term in a log-link
model represents a relationship of exponential increase or decrease. The interaction of year and
region in our model corresponds to separate exponential growth or decline estimates for each
region; the estimated coefficients of the interaction and their uncertainty are the regional rates of
change and their uncertainty. Note that our model represents regional trends as simple
exponential growth or decline; see the section “Why only linear trends?” below for additional
discussion.

We calculated the yearly rate of change as the weighted average of regional rates of change,
using the proportion of butterflies in each region for the weights. To determine the proportion of
butterflies in each region, we calculated a metric of butterfly abundance that was comparable
across years and regions. Because our model accounted for seasonal variation in butterfly
abundance, there was no way to directly estimate a single value of butterfly abundance within a
year. Instead, we calculated the “site-level abundance index” for a given year numerically using
model predictions; we then scaled by geographic area to calculate the “regional abundance
index” for that year, which we used as weights. We also summed regional abundance indices in
each year to calculate the “yearly abundance index” for additional comparisons. Note that the
proportion of butterflies in each region (i.e., relative values of regional abundance indices)
changed across years; as time went on, the region with the highest growth rate had an increasing
proportion of that year’s butterflies, leading to an increased yearly rate of change.

To calculate our site-level abundance index for a single region and year, we calculated the
area under the curve of predicted counts across a biologically relevant period of the year
(“window of activity”). We defined the window of activity for a region by the quantile of
surveys with non-zero counts across day of year (DOY): the window began at the DOY of the
0.005 quantile and ended at the DOY of the 0.995 quantile. To obtain model predictions, we



defined values for all variables included in the model. If held constant, variables other than year
and region — effort, site, monitoring program — would not impact comparisons across years and
regions but were still required values for the model to predict butterfly counts. We chose to use
the NABA monitoring program, the average of site effect across time and space, and average
effort for predictions. From the fitted model, we predicted butterfly counts at 0.1-day intervals
across the window of activity for each region and each year and integrated the area under these
predictions using the trapezoid method to produce a site-level abundance index. This index is
analogous to estimated observable butterfly-days from models with average effort (e.g., 24). To
calculate the regional abundance index, we multiplied the site-level abundance indices calculated
for each region by the region’s area (in km?). Under the assumptions that: 1) all sites within a
region are equally good indicators of butterfly activity within a year, 2) the entire region is well
represented by monitoring sites, and 3) detection is constant across space and time, the
abundance index is proportional to the total number of butterflies in each region. These
assumptions are consistent with those required for similar analyses (e.g., 16). We calculated
yearly abundance indices by summing regional abundance indices for each year (line in Fig. 1B),
and we calculated the cumulative % change in abundance by comparing the yearly abundance
indices of 2000 and 2020. We note that the regional and yearly abundance indices do not reflect
absolute abundance but can be used as a relative measure of butterfly abundance and can be
compared across years when calculated from the same fitted model. Because abundance indices
are used for relative comparisons, rescaling the values by multiplying by a constant does not
change any of our calculations or results. Thus, when plotting the abundance index in Fig. 1B,
we divided by a constant to put the abundance indices on a similar scale to the average survey
counts.

Because there was no clear way to estimate uncertainty for changes in our yearly abundance
index, we instead calculated and measured uncertainty for the overall rates of change and the
annual percent change in abundance. Because the yearly rates of change (weighted average of
regional rates of change, using as weights the regional abundance indices in each year) varied
across years, we calculated the overall rate of change as the arithmetic mean of each of the
estimated yearly rates of change from 2000 to 2020. Exponentiating this value gave an annual
percent change that was equivalent to the geometric mean across annual percent changes. This is
because the geometric mean X;eomerric OF Some variable X = xu, ..., xn is equal to eE1°8X)] and
so the log of the geometric mean of X is the arithmetic mean of the log values of X. To
determine the uncertainty for the overall rates of change, we extracted the standard error
associated with regional rates of change from the fitted GAM model and propagated this
uncertainty to yearly and overall rates of change using the delta method as implemented in the R
package msm (48). In doing so, we assumed the covariance in propagated error between years
was zero. We calculated annual percent changes in abundance by exponentiating the overall rate
of change.

Aggregating observations of butterflies of different species into a single count provided a
useful estimate of the overall trend in butterfly abundance. However, this approach could mask
the dynamics of most butterfly species if the most abundant species had unusual trends. We thus
assessed the robustness of our overall trend estimate by repeating the above analyses after
removing all data from the most common species in each region (greatest total count summed
across sites and years). We obtained qualitatively similar results when fitting our model to these
truncated data, with the exception of the regional estimate for the Pacific Northwest (table S4).
In the Pacific Northwest, the most prevalent species was Nymphalis californica (California



Tortoiseshell), a highly irruptive species which spiked in abundance within the region (and our
data) in 2018 and 2019. See main text for full results.

Modeling trends in individual species

Species-level full model

We estimated changes in abundance individually for 356 species with sufficient data (i.e.,
ten distinct years with non-zero counts and >30 total non-zero counts). For the 306 species that
also had at least 10 unique sites with non-zero observations and at least 60 total surveys with
non-zero counts in one or more regions, we estimated species trends regionally with the “full”
model (table S3). For each species, we filtered our data to the extent-of-occurrence polygons
calculated for that species (21) and imputed implicit zeros (see above) for all appropriate
surveys. We then fit the same model used to estimate the trend in overall butterfly abundance
with the following terms: fixed effects of region, region by year interaction, monitoring program,
thin plate regression smoother across day of year for each region, fixed effects of duration and
party minutes interacting with indicator variables, and random effect of site (box 1). Because
these models involved less data than the total abundance model, we were able to treat more sites
independently, and only pooled sites with two or fewer surveys into the same site identity. For
some species we had data for only a single region, a single monitoring program, or a single (or
no) effort type (duration or party minutes) reported. In those cases, we simplified the model
accordingly.

For computational reasons, we fit models with 6,000 or more observations using the “bam’
function with the fREML method; for species with fewer data points we instead fit using ‘gam
with REstricted Maximum Likelihood (REML). In a few cases, individual species did not
converge under the above treatment, and either required the use of ‘gam’ instead of "bam" or
required additional data filtering to ensure model convergence. This amended approach was
generally necessary when one or more monitoring programs were present but very poorly
represented in the data, having no or very few non-zero counts. Additional filtering was
necessary for model convergence for 10 species (table S5). For 10 species, the model fitting
process failed to reach convergence for the smoothing penalty, resulting in a warning. This may
reflect that the smoothing term required additional maximum flexibility (more knots) for optimal
fitting. However, the smoothing term did not directly contribute to our estimation of rates of
change or changes in abundance index, and we chose to use a consistent modeling framework
(including smoother flexibility) across all species. Thus, we retained these 10 species for all
analyses.

We calculated site-level, regional, and yearly abundance indices using the same methods as
in our model of trends in total butterfly abundance, with a few exceptions. A few species were
not observed in NABA circle counts, and we used a different monitoring program as the baseline
when calculating abundance indices. Because the baseline monitoring program was the same
when producing predictions across years and regions for a given species, the choice of
monitoring program did not change the relative values of our abundance indices. To calculate the
regional abundance index from the site-level abundance indices for individual species, instead of
multiplying by the total area in the region, we multiplied by the total area (in km?) of the extent-
of-occurrence polygons for that species in the corresponding regions. Yearly abundance indices
were the sum of regional abundance indices of that year; as with the trends in the total butterfly
abundance model, we calculated the cumulative percent change in abundance by comparing the
yearly abundance indices of 2020 and 2000. Regional and annual abundance indices are
comparable among regions and years within species, but do not represent absolute abundances of



butterflies and are not comparable across species. However, proportional changes in abundance
(e.g., cumulative percent changes) are comparable across species (table S5).

We calculated species-level overall rates of change and annual percent change in abundance
using the same methods as in the total butterfly abundance model. For species present in only
one region, the regional rate of change extracted from the GAM model was simply the overall
rate of change.

Species-level simplified model

Several species (50 species) had insufficient data to meet our criterion for the full model
with regional-level analysis, but still had ten or more unique years with non-zero counts and 30
or more surveys with non-zero counts (table S3). Often these were rare or at-risk species that
were heavily surveyed in only a few locations. Generally, these species had very small ranges,
which precluded the need to account for regional variation. We fit data for these species with a
simplified model identical to the species-level full model described above, except (a) we
included a single smoother across day of year instead of one per region, and (b) we included a
main effect of year instead of a year by region interaction (box 1). As with the full model, we fit
species with 6,000 or more observations using "bam™ with fREML, using ‘gam” with REML for
all others. Several species with more than 6,000 observations required the use of "gam" to ensure
convergence and three species required additional data filtering to ensure model convergence
(table S5). For two species, model fitting failed to converge for the smoothing penalty,
suggesting the smooth term may have been insufficiently flexible. As with the species-level full
model, we chose to use a consistent modeling framework rather than customize model flexibility
for individual species, and we report results for these two species and include them in further
analyses. We calculated the abundance indices, rates of change, annual percent change, and
cumulative percent change as above; because the species-level simplified model fits a single
effect of year, we extracted overall rate of change and associated uncertainty directly from the
model (i.e., the same method as the species-level full model for species present in only one
region).

Expert review of population trends

After calculation of population trends, each species was reviewed by at least two experts
from among the authors (T. Wepprich, Oregon Department of Forestry, Salem, OR also served
as an expert for some species). Species were flagged for incongruence with trends available from
external sources or if visual inspection found that 1-3 individual survey events appeared to drive
an estimated trend which was not representative of most observations. Fourteen species were
removed at this step: Amblyscirtes belli (Bell's Roadside-Skipper), Amblyscirtes elissa (Elissa
Roadside-Skipper), Amblyscirtes texanae (Texas Roadside-Skipper), Boloria chariclea (Arctic
Fritillary), Callophrys polios (Hoary Elfin), Chlosyne acastus (Sagebrush Checkerspot),
Cymaenes tripunctus (Three-spotted Skipper), Heliopetes laviana (Laviana White-Skipper),
Hesperia metea (Cobweb Skipper), Nastra neamathla (Neamathla Skipper), Neominois ridingsii
(Ridings' Satyr), Poanes aaroni (Aaron's Skipper), Problema bulenta (Rare Skipper), and
Siproeta stelenes (Malachite) After removing these species, we were left with 301 species fit
with the species-level full model, and 41 species fit the species-level simplified model; we used
these 342 species in all further analyses.

Richness calculation
We created a richness index to represent the number of species that could reasonably be
found in each region. From each of the 301species for which we had sufficient data to fit



separate regional trends and for which NABA counts could be predicted, we used the species-
level full model (see previous section) to predict counts for a NABA survey with average effort
at an average site on the day of year with highest activity for that species. If the predicted count
was >1, we considered the species ‘likely observable’. We then calculated species richness as the
total number of likely observable species in the region-year of interest. Uncertainty in these
richness estimates was not calculated.

Why only linear trends?

The models we employed captured only exponential increases or decreases in each region
(i.e., linear trends on a log scale). Where possible, ecologists — including many of the authors
here — seek to fit population models with greater flexibility. Models that incorporate
nonlinearities can provide key insights into population behavior, especially in the context of
changing environmental drivers like climate, pesticide use, land use, and habitat management.
We initially explored a range of model options for this study, and eventually recognized it was
not feasible to capture non-linear trends using a general framework that would produce
comparable estimates across species. Species varied greatly in their number of
detections/observations within the data, with many not having sufficient data to support more
complex models. Modeling nonlinear trends would have required either removing hundreds of
species or fitting a series of models with differing levels of complexity, limiting our ability to
make comparisons across species. In using different model structures, any estimated differences
in trends across species could have been due to true biological processes, or simply to the
differing constraints of the various model structures. This issue is compounded by data
availability differences among regions for individual species, such that some species would
require different model structures for each region. Although incorporating a flexible structure in
our models would have been ideal, the inclusion of nonlinear trends increases the complexity
(e.g., calculating uncertainty in estimates) and likelihood of errors (e.g., achieving model
convergence) while simultaneously complicating the process of expert validation. Future work
should consider the possibility of incorporating nonlinear trends into butterfly analyses as
additional data becomes available.

Post-hoc analyses
False discovery rate correction

By fitting separate models to hundreds of species and reporting individual P-values, we
increased the likelihood of encountering false positives (species for which an apparently
significant non-zero trend was in fact not significant). Because of our low statistical power, we
focus on reporting the exact P-values in main text. However, we also calculated corrected P-
values based on the false discovery rate correction method of (49). We found that 87 species had
significant overall trends at the P < 0.05 level using the more stringent P-value calculations
compared with 123 species reported in the main text (table S5). We further found that the ratio of
declining to increasing species was similar, 79 declining and 8 increasing species (9.9:1 ratio)
using the more stringent P-value calculations compared to 114 declining and 9 increasing species
(12.7:1 ratio) reported in the main text.

Regional comparisons

Several studies have found Northern hemisphere species have higher population growth
rates at the northern edge of their range compared to the southern edge, consistent with a
warming climate and latitudinal variation in thermal constraints (14, 22). To test for this pattern
within our data, we identified pairs of regions adjacent to one another along a north-south



gradient: Southeast and Northeast regions, Southeast and Midwest regions, Southwest and
Mountain Prairie regions, and Pacific Southwest and Pacific Northwest regions (Fig. 1). For each
region-pair, we used only species present in both regions. We fit linear regression models, using
species’ estimated regional rates of change as the response variable and including as predictors a
fixed effect for region geography (north vs south) and a fixed effect of species identity. We
weighted each observation (i.e., each species-region) by the precision matrix (inverse of the
variance-covariance matrix) of the regional rates of change to account for uncertainty. We
included a fixed effect of species in this model to create a paired t-test; this approach is possible
because we only included species with growth rates in both regions. We fit each region pair this
way and tested for significant differences using marginal hypothesis testing as implemented in
the R package car (50).

Trait association

We hypothesized seven key traits might be associated with butterfly population trends: 1)
body size (wingspan in cm), 2) degree of host-plant specialization, 3) voltinism, 4) life stage of
overwintering individuals, 5) affinity for moist habitats, 6) association with human-dominated
habitats, and 7) affiliation with different types of canopies. Larger butterflies have sometimes
been found to have more negative or downward-trending population trends relative to smaller
butterflies (1); conversely, larger butterflies are often more mobile, which may allow them to
move in response to climate change or other disturbances (51-52). Butterflies that are specialists
on one or a small number of food plants are generally expected to be less resilient to variable
environments (53), and butterflies that are host plant specialists have experienced more negative
population trends (54). At-risk butterfly species are disproportionately univoltine (one generation
per year) (12), and multivoltinism (more than one generation per year) has sometimes been
associated with greater population trends (14); we expected multivoltine species to have higher
trends than univoltine species. Species that overwinter as eggs have been more vulnerable to
declines in regional studies (12, 55). Dry regions and dry years have previously been associated
with more negative butterfly population trends (16-17, 56), and we expected species with lower
moisture affinity to have more negative population trends. Given the ongoing restructuring of
natural habitats in the Anthropocene (6), we expected species with higher affinity for human-
dominated habitats to have higher population growth rates. Species of different canopy
affiliations may be more or less vulnerable to habitat loss according to regional land cover
changes, and canopy generalists are expected to be less likely to show declines than canopy
specialists.

We obtained wingspan, voltinism, diapause stage, host plant specialization, and habitat
affinities from LepTraits 1.0, a database of global butterfly traits (57). When the LepTraits 1.0
species consensus trait indicated variation, we referenced source records from North American
field guides to simplify trait codes. Similarly, we extracted additional trait records from North
American field guides to fill gaps from LepTraits 1.0. We defined host-plant specialists as
species that feed on no more than one plant family. Ordinal designations for habitat affinity were
translated to a +2 to -2 integer scale based on the strength and direction of a species’ association
with mesic habitats, disturbance, canopy cover, and canopy specialization (“Very strong” =2 or -
2; “weak” =1 or -1; “both”, “varies”, and “no evidence” = 0) .

We conducted post-hoc analyses relating species overall rates of change to species-level
traits. We used weighted linear models with species rates of change as the response variable and
individual species traits as predictors in separate models, weighted by the precision matrix of
species rates of change. We then evaluated the support for traits as predictors of rates of change
using marginal hypothesis testing (table S6). In the case of canopy affinity, which was



represented by two variables, we included both in the same model. In the cases of voltinism and
overwintering stage, our model identified the traits as a significant predictor, but each trait was
made up of categorical variables. We report the significance of the marginal hypothesis testing,
and then present the qualitative findings of post hoc comparisons implemented using the R
package emmeans (58). We also fit a model with all trait terms to identify the maximum possible
variation in rates of change explained by traits; this model included traits that were not
significant predictors of growth rate, and thus may overestimate the variation explained by traits.

Phylogenetically corrected trait association

Phylogenetic regressions are sometimes used instead of conventional regression models
because species are not independent, as closely related species tend to have common traits (59).
We repeated our trait analysis using phylogenetic regression models. Species trends and traits
were mapped onto a phylogeny of North American butterflies (60). Of the species for which we
estimated species-specific rates of change, 97% were present in this phylogeny and thus could be
included in this analysis. For each trait, we used the "pgls.SEy" function (61) in the ‘phytools’
package (62) to generate both a null model with no predictors for growth rate and a model with
the given trait as a predictor for growth rate. The “pgls.SEy" function allows the inclusion of
estimated error in the response variable; we included the estimated error associated with species
rates of change. For each trait, the null model and trait model were fit only to the data for which
that trait was known. For each trait, we compared the two models using AIC; as the null model
was always the better fit, we did not pursue further statistical tests (table S8).

Software

All analyses were performed in R 4.2.2 (46). We used the following key packages: the
tidyverse suite (63) to process data; mgcv (45) to fit GAMs; msm (48) to implement the delta
method; sf (64), sp (65), rgdal (66) and terra (67) to carry out spatial data processing; car (50) for
marginal hypothesis testing; emmeans (58) for post hoc comparisons; phylolm (68), phytools
(62), and ape (69) for phylogenetically corrected trait association analyses; tidyterra (70),
ggplot2 (71) and patchwork (72) to generate figures. Spatial data processing implemented in the
rgdal package used the open-source software GDAL (73).



BOX1

To calculate trends in total butterfly abundance and the abundance for most individual
species (the “species-level full model”), we estimated rates of change in each region, as well as
terms to account for seasonality of activity (e.g., phenology), differences across regions,
monitoring programs, sites, and differences in survey effort.

We used a negative binomial model:

count; . ~ NB (,uj,k,t, 0)

in which the count (for either a species or all butterflies) at location j on day of year k and year t
comes from a negative binomial distribution with a mean ;. and an overdispersion parameter
6. We estimated the mean using a log-link function:

log(,uj,k,t) = fregion(DOY) + B, X region; + B, Xregion; X year, + f, X program;
+ Bea X duration; . X Ig + Bpm X partyminutes; ; X Ly, + €

where fr..gi0n IS the smoother for seasonality for the given region, DOY is the day of year (from
1 to 366), duration and partyminutes are the two possible reported measures of survey effort, lq
and lpm are indicator variables to identify observations in which effort was reported as duration
or party minutes respectively, and e, is a random effect of survey site. In the programming
language R, we write this model as:

bam(count ~ -1 + s(doy, by = region, bs = "tp", k = 10)
+ region + year:region + ©program + duration:Ig
+ partyminutes:Ipm + s(site, bs = "re"), family = "nb")

For those species with sparse data (“species-level simplified model”), we simplified the
model by removing the region terms to produce a single range-wide model:

log(,uj,k,t) = f(DOY) + B X year, + B, X program; + Peq X duration; . X Iy + Bpm X
partyminutes; X I,y + €.

In the programming language R, we write this model as:
bam(count ~ s(doy, bs = "tp", k = 10) + year + program +

duration:Iq + partyminutes:Ipn +
s(site, bs = "re"), family = "nb")




Figure S1. Outline of our modeling process. (A) For each of our models, we fit survey counts with generalized
additive models (GAMs), from which we calculated regional abundance indices and regional rates of change. We
then used these values to calculate annual percent change at the regional and national level and cumulative percent
change. This process was simplified for species-level models when the species was present in only one region and in
cases when species data were limited. (B) Regional abundance indices were calculated using the site-level
abundance indices scaled by the area of the range in each region (species models) or the area of each region (total
butterfly abundance). (C) We report trends from three types of models: total butterfly abundance, species-level full
model (301 species), and species-level simplified model (41 species). We identified regional trends in richness using
only species-level full models. We used the results from all the species-level models for post-hoc analyses to
identify regional differences in trends and the associations between trends and species traits.
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Figure S2. Phenology curves for six species. Examples of the fitted smooths included in species-level models to
control for the seasonality of butterfly activity. Black curve shows the fitted model; rugplot along the x axis shows
density of surveys. (A-C) The smooths for the three species with the highest growth rates among those species
identified as increasing; (D-F) the smooths for the three species with the most negative growth rates among those
species identified as declining. Smooth shape represents a balance between biology and statistical limitations:
Poanes melane shows clear bimodal activity curve reflective of its two generations per year, while Appias drusilla
data was so sparse that there was insufficient support for a less linear curve. In the limiting case, sparse data would
produce a completely linear phenology term, as was used to control for phenology in (16). The smooths used to
account for phenology did not vary across years.

(A) (D)

Poanes melane (Umber Skipper) Eurema proterpia (Tailed Orange)

Pacific Southwest ‘Southwest

80

=]
9
El

estimated activity
estimated activity

5
&

g

N

]
N
=]

0.00 1 {111 T TN L1 111} L1
Jan 1 Apr 1 Jul 1 Oct 1 Jan 1 Jul 1 Aug 1 Sep 1 Oct 1 MNow 1

(B) (E)

Lycaena mariposa (Marniposa Copper) Lycaena hermes (Hermes Copper)

Pacific Northwest Simplified model

estimated activity
a8 L

. [
estimated activity

Jul Aug 1 Sep 1 Apr 1 May 1 Jun 1 dul 1

C F
© Erynnis tristis (Mournful Duskywing) ® Appias drusilta (Florida White)
Pacific Southwest Southwest Simplified model
075
0.4
g 020 g‘
EE 8
i %,
£ &
8 0.25 0.15 8
0.2
0.00 L1 LU0 L1

L— 1 Emmim |
Jan 1Apr 1Jul 1 Oct 1Jan 1 Jan 1Apr 1 Jul 1 Oct 1Jan 1 Apr 1 Jul 1 Oct 1



Figure S3. Butterfly monitoring varied by region and time. Bars show the number of surveys in each region
(columns) and each time period (rows; 5-6 years), binned by week. Note the difference in y scales: the Midwest
region is home to several of the largest monitoring programs and had substantially more surveys than any other
region.
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Figure S4: Common threats to butterflies have increased for the past century while the preponderance of
butterfly monitoring data is available only within the past two decades. (A) Pounds of agricultural pesticide
active ingredient reported in the US for 21 selected crops (74). (B) Temperature anomalies in the U.S., measuring
the difference in degrees Fahrenheit between yearly mean temperature and the average from 1901-2000 (75). (C)
Change in land use measured by percent of grassland lost since 1850 (76). (D) Number of butterfly surveys available
per year from the 35 monitoring programs used in this study. Dotted line shows the year 2000, the first year of our
analysis; threats in A-C had already reached elevated severity at that time.
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Figure S5. Histogram of species rates of changes in abundance over the study period (2000-2020), shown on a
linear scale. Species with rates of change that significantly differed from zero (P < 0.05) are labeled “declining”
(114 species) and “increasing” (9 species), respectively; remaining species that changed by at least +/-10% from
2000 to 2020 were labeled as “possibly declining” and “possibly increasing”. The median species declined in
abundance by 41.5% across the study period. This figure is an alternative to Fig. 2, which presents the histogram on
the log scale. Because declines are bounded at -100% while increases have no bounds, the log scale allows for easier
interpretation of the bulk of the data.
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Table S1.

Summary of data sources. Detailed information on each “Monitoring program™ that contributed data to our study.
“Data label” denotes the label used in the data files (the “source™ column) if it differs from the listed monitoring
program. “Data collectors™ distinguishes data collected by career scientists (“Researcher(s)”) or by volunteers
(“Volunteer scientists™). "Targeted" identifies programs that recorded only individuals from one or a few target
species (“yes”) versus programs that recorded all butterflies seen (“no”). In "Monitoring approach’, “repeated
transect” refers both to Pollard-walks and more elaborate transect methods, such as distance sampling; for details on
circle counts and field trips, see 19. "Number surveys" lists all surveys available from the data sources in the
contiguous U.S. for the study period (2000 to 2020).

Table S2.

Summary of key analysis terms. The estimated abundance indices are metrics of relative abundance for a species
(or total butterfly abundance). These indices are comparable within a model (e.g., to evaluate a species’ trend), but
not across models (e.g., to compare abundance between two species in a given year).

Table S3.

Data used to fit species-level models. A summary of the volume of data available for each species included in our
analyses. “# surveys (direct observation)” provides number of non-implicit records used in model fitting; “# surveys
(implicit zeroes)” provides the number of implicit records used, and “% implicit zeroes” gives the percent of data
used that were implicit zeroes. “# sites” gives the number of unique sites in the data used, # monitoring programs
gives the number of monitoring programs represented in the data used (see table S1), and “Total butterflies seen”
shows the sum of counts across all observations used.

Table S4.

Trends in total butterfly abundance for each region. Comparison of trends in overall butterfly abundance as
estimated in the main manuscript (“original”) to an identical model fit to data in which the most abundant species
was removed from each region (“without most common”). “Total” row represents the total changes for the
contiguous U.S.

Table S5.

Abundance trends for each of the 342 species that were estimated using species-level models. “Trend" is defined
as in Figs. 2 and 4: species with rates of change that significantly differed from zero (P < 0.05) are labeled
“declining” (82 species) and “increasing” (8 species), respectively; remaining species that changed by at least +/-
10% from 2000 to 2020 are labeled as “possibly declining” and “possibly increasing”. "Estimate” reports the rate of
change, which is the natural log of the annual per capita growth rate (i.e., the population growth rate). "SE" is the
standard error associated with the estimated rate of change. "95% CI" is the 95% confidence interval of the rate of
change as calculated from the estimate and standard error. "Pval” provides the P-value associated with the rate of
change, either calculated directly from the model (species-level simplified model, species-level full model for
species present in a single region) or based on the estimate and standard error. “Adjusted Pval gives P-value after
correcting for the false discovery rate. “Type of model” distinguished species for which we fit separate trends for
each region (“full”) and species for which we fit a single trend (“simplified”). ‘mgcv method™ identifies the function
used to fit each species. The final columns identify species that required additional data filtering for model
convergence and cases when the fitted model provided a warning about the estimation of the smoothing penalty. The
smoothing penalty only impacts estimated seasonality of activity (phenology) and not trend estimates.



Table S6.

List of species trends by butterfly family. Percent of species in each family that are declining, stable, and
increasing. Species with rates of change that significantly differed from zero (P < 0.05) are labeled “declining” (81
species) and “increasing” (8 species), respectively; remaining species that changed by at least +/-10% from 2000 to
2020 were labeled as “possibly declining” and “possibly increasing”. “Little change” reports the species with
estimated cumulative change between -10% and +10%. Parentheses show the number of species.

Table S7.

Summary of trait analyses. Results of marginal hypothesis testing ("Anova()” from the car package; 50) of linear
mixed models that included family as a random effect and weighted species rates of change by the inverse of the
associated uncertainty. For categorical traits, we present coefficient estimates for each category calculated using the
emmeans package (58), and list all pairwise contrasts with P < 0.1 calculated using the Tukey method.

Table S8.

Summary of phylogenetically-corrected trait analyses. Statistics comparing a null model that includes only
phylogeny with a model including phylogeny and the specified trait, weighting species by the precision matrix of
estimated rates of change. The number of species included in each pair of models differs due to available trait data.
In all cases the null model had the best support, with ‘dAIC’ reporting the difference in AIC between the null and
trait models.

Table S9.

Comprehensive list of species regional trends for the 319 species fit with the species-level full model. Columns
are defined as in Table S5, with trend, rate of change and cumulative change now referring to estimates for
individual regions rather than the overall U.S estimate.

Table S10.

Number of surveys for each study year (2000-2020). The number of surveys used, across all available monitoring
programs, in the trend model to estimate changes in total butterfly abundance and to generate Figure 1B.
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