# Supplying Pollinator-Safe Nursery Plants

**AVOIDING HIDDEN RISKS** 



More than a quarter of home gardeners are choosing plants that attract bees and butterflies (Khachatryan and Rihn 2020). The nursery industry has been an important partner by ramping up production of pollinator-attractive plants and local natives.

Growing natives, and moving towards more pollinator-safe production methods, are not only important for conservation but may be financially rewarding for nurseries. Recent studies find that:

The first line of defense in pest management is using timetested non-chemical methods to prevent pest buildup. The second is conducting regular scouting to detect pests early.

- ★ Consumers who prefer native plants are willing to pay a premium for them (Yue et al. 2012).
- ▶ Plant lovers (frequent purchasers who spend more money on plants) prioritize sustainable production methods (Wei et al. 2024).
- Consumers are willing to pay \$1.15 more (\$1.54 in 2025 dollars, per Bureau of Labor Statistics) for bee-friendly production methods compared to traditionally grown plants, and more for bee-friendly production than for other nursery sustainability practices (Getter et al. 2016).

Many producers strive to provide pollinator-safe plants, for example by committing to neonicotinoid-free production (Khachatryan et al. 2021). Yet some may be unknowingly substituting other risky insecticides or using fungicides detrimental to pollinators (Halsch et al. 2022).

After implementing sound pest prevention and scouting protocols, a next step is avoiding hidden risks for bees and butterflies by sidestepping certain pesticides. Xerces suggests avoiding some systemic insecticides altogether and refraining from use of certain other pesticides on pollinator-attractive plants during the last two weeks before sale.

Changing may not be feasible for every nursery or plant, but we invite you to do what you can! By doing so, you can help protect our pollinators in gardens and restoration sites.

TOP TO BOTTOM—Workers prepare native seedlings at the Hiawatha National Forest greenhouse; monarch caterpillar nibbling on milkweed seedlings in a greenhouse; a female long-horned bee foraging on an aster flower collects pollen and nectar.









## **Persistent and Toxic Systemic Insecticides**

Systemic insecticides are designed to permeate plants and may linger in all plant tissues after application, exposing bees or butterflies that later feed on leaves, nectar or pollen. The following table contains a list of systemic insecticides used in nursery and greenhouse production that we recommend avoiding entirely, because there is evidence that they are toxic to adult or larval bees and slower to break down. This information is based on testing conducted for U.S. EPA pesticide ecological risk assessments, the University of California's Bee Precaution Pesticide Ratings, and the National Pesticide Information Center.

## Table 1. Systemic Insecticides to Avoid

Avoid use of the following systemic insecticides in nursery or greenhouse production of pollinator-attractive plants, including plants used as hosts for larval butterflies.

| ACTIVE INGREDIENT   | *    | *               | Ē    |
|---------------------|------|-----------------|------|
| Abamectin           | HIGH | <2 μg           | MED  |
| Acetamiprid         | MOD  | YES             | MED  |
| Chlorantraniliprole | N/D  | YES             | HIGH |
| Chlorpyrifos        | HIGH | <b>&lt;2 μg</b> | MED  |
| Clothianidin        | HIGH | ??              | HIGH |
| Cyantraniliprole    | HIGH | YES             | HIGH |
| Cyromazine          | LOW  | YES             | HIGH |
| Diazinon            | HIGH | <b>&lt;2 μg</b> | MED  |
| Dicrotophos         | HIGH | ??              | MED  |
| Dinotefuran         | HIGH | YES             | HIGH |
| Emamectin benzoate  | HIGH | ??              | HIGH |
| Fenazaquin          | MOD  | <b>&lt;2 μg</b> | MED  |
| Fipronil            | HIGH | <b>&lt;2 μg</b> | HIGH |
| Flupyradifurone     | HIGH | ??              | HIGH |
| Imidacloprid        | HIGH | YES             | HIGH |
| Methoxyfenozide     | LOW  | YES             | HIGH |
| Oxamyl              | HIGH | <b>&lt;2 μg</b> | MED  |
| Phorate             | HIGH | ??              | HIGH |
| Pyrifluquinazon     | MOD  | ??              | LOW  |
| Spirotetramat       | MOD  | YES             | HIGH |
| Tetraniliprole      | HIGH | <b>&lt;2 μg</b> | HIGH |
| Thiamethoxam        | HIGH | ??              | MED  |

KEY Adult bee toxicity level Larval bee toxicity

Persistence level ?? Unknown

## **Methods**

Primary sources for the information include U.S. EPA ecological risk assessments for pesticides, the Xerces Society Systemic Insecticides List, the University of California's Bee Precaution Pesticide Ratings, and the National Pesticide Information Center.

## **Pollinator Conservation Resource Center**

**Pollinator-attractive plants** offer more than just nectar and pollen; they also serve as host plants for caterpillars, providing food for butterfly and moth larvae, and nesting materials for bees. For guidance on which plants are attractive to pollinators in your region, visit: xerces.org/pollinator-resource-center



#### Table 1 Notes:

- SYSTEMIC INSECTICIDES available in nursery or greenhouse production of ornamental plants were identified from the Xerces Society Systemic Insecticides List.
- **ADULT BEE TOXICITY LEVEL** is derived from EPA Ecological Risk Assessments. Values correspond to the U.S. EPA system for classifying acute toxicity to bees, with:
  - HIGH indicating adult honey bee oral toxicity <2 μg/bee
  - MODERATE indicating 2–10.99 μg/bee
  - **LOW** indicating ≥11 μg/bee
  - N/D (non-definitive) indicates that tests did not result in a clear classification. Active ingredients with Level I or II toxicity rankings from University of California's Bee Precaution system (UCBP) were included in some cases
- **LARVAL BEE TOXICITY** a.i.s are listed as
  - YES if UCBP indicates as "Toxic to honey bee brood"
  - <2 μg was included for some active ingredients if UCBP did not contain information about larval toxicity but EPA reported a honey bee larval oral LD<sub>50</sub> of <2 μg/larva in the a.i.'s ecological risk assessment. *Note:* larval toxicity is not currently categorized by EPA but <2 μg/individual is the threshold for adult bees</li>
- © PERSISTENCE LEVEL follows data contained in the Xerces Society Systemic Insecticides List, which in turn draws from persistence data captured in EPA Ecological Risk Assessments. Persistence categories are based on the categorization used by the National Pesticide Information Center.
- **?? UNKNOWN** in any column means that the information was not readily available from the primary sources.

# **Insecticides and Fungicides**

We recommend avoiding the use of the following (mostly contact) insecticides and fungicides in the production of pollinatorattractive plants, including plants used as hosts for larval butterflies, during the two-week period prior to sale. These pesticides are toxic to bees and/or butterflies but are not expected to linger as long on or in plant tissue.

This information is based on testing by the U.S. EPA ecological risk assessments for pesticides, the University of California's Bee Precaution Pesticide Ratings, the National Pesticide Information Center, and the Insecticide Resistance Action Committee (IRAC).

## Table 2. Insecticides and Fungicides to Avoid Close to Sale

Avoid the use of the following insecticides and fungicides in the production of pollinator-attractive plants, including plants used as hosts for larval butterflies, during the two week period prior to sale.

| ACTIVE INGREDIENT                        | *        |        |
|------------------------------------------|----------|--------|
| Acephate                                 | YES      | YES    |
| Alpha-cypermethrin                       | YES      | YES    |
| Azadirachtin (neem oil)                  | YES      | YES    |
| Azoxystrobin                             | LOW      | YES    |
| Bacillus subtilis                        |          |        |
| » strain IAB/BS03                        | YES      | ??     |
| Bacillus thuringiensis                   |          |        |
| › ssp. <i>aizawai</i>                    | LOW      | YES    |
| » strain GC-91                           | YES      | YES    |
| › ssp. galleriae                         |          |        |
| » strain SDS-502                         | YES      | YES    |
| > ssp. israelensis                       | ??       | YES    |
| » SUM-6218                               | LOW      | YES    |
| > ssp. kurstaki                          | LOW      | YES    |
| » strain ABTS-351                        | LOW      | YES    |
| » strain EG7841 LEP                      | LOW      | YES    |
| » strain EVB-113-19                      | LOW      | YES    |
| » strain SA-11/ATCC1322                  | LOW      | YES    |
| » strain SA-12/ATCC1323                  | LOW      | YES    |
| > ssp. tenebrionis                       | ??       | YES    |
| » strain SA-10                           | ??       | YES    |
| Beauveria bassiana                       | YES      | YES    |
| Beta-cyfluthrin                          | YES      | YES    |
| Bifenazate                               | YES      | ??     |
| Bifenthrin                               | YES      | YES    |
| Boscalid                                 | YES      | ??     |
| Buprofezin                               | YES      | ??     |
| Burkholderia spp.                        |          |        |
| » strain A396; heat-killed               | YES      | YES    |
| KEY 🔏 TOXIC TO BEES 🞉 TOXIC TO LEPIDOPTE | RA ?? UN | IKNOWN |

| ACTIVE INGREDIENT         | *   |     |
|---------------------------|-----|-----|
| Capsaicin                 | YES | ??  |
| Captan                    | YES | ??  |
| Carbaryl                  | YES | YES |
| Chlorfenapyr              | YES | YES |
| Chlorothalonil            | YES | ??  |
| Chromobacterium subtsugae | YES | ??  |
| Clove oil                 | YES | ??  |
| Cyclaniliprole            | YES | YES |
| Cyfluthrin                | YES | YES |
| Cyhalothrin, gamma        | YES | YES |
| Cypermethrin              | YES | YES |
| DDVP (Dichlorvos)         | YES | YES |
| Deltamethrin              | YES | YES |
| Diatomaceous earth        | YES | ??  |
| Diflubenzuron             | YES | YES |
| Dimethoate                | YES | YES |
| Dimethomorph              | YES | ??  |
| Esfenvalerate             | YES | YES |
| Ethoprop                  | YES | YES |
| Etoxazole                 | YES | ??  |
| Fenoxycarb                | ??  | YES |
| Fenpropathrin             | YES | YES |
| Fenpyroximate             | LOW | YES |
| Flonicamid                | LOW | ??  |
| Flutolanil                | YES | ??  |
| Fosetylal                 | YES | ??  |
| Hexaflumuron              | ??  | YES |
| Hexythiazox               | YES | ??  |
| Indoxacarb                | YES | YES |

| ACTIVE INGREDIENT                 | *               | No.    |
|-----------------------------------|-----------------|--------|
| Iprodione                         | YES             | ??     |
| Isaria fumosorosea                |                 |        |
| » Apopka strain 97                | YES             | ??     |
| » strain FE 9901                  | YES             | ??     |
| Lambda-cyhalothrin                | YES             | YES    |
| Lime sulfur                       | YES             | ??     |
| Malathion                         | YES             | YES    |
| Metaflumizone                     | YES             | YES    |
| Metam-sodium                      | LOW             | ??     |
| Methamidophos                     | YES             | YES    |
| Methidathion                      | YES             | YES    |
| Methiocarb                        | YES             | YES    |
| Milbemectin                       | YES             | YES    |
| Myclobutanil                      | YES             | ??     |
| Naled                             | YES             | YES    |
| Neem oil                          | YES             | YES    |
| Novaluron                         | YES             | YES    |
| Noviflumuron                      | ??              | YES    |
| PCNB                              | YES             | ??     |
| Permethrin                        | YES             | YES    |
| Phosmet                           | YES             | YES    |
| KEY 🔏 TOXIC TO BEES 🎉 TOXIC TO LE | PIDOPTERA ?? UI | NKNOWN |

| ?? YES YES LOW YES YES ?? | YES ?? YES YES YES YES YES YES |
|---------------------------|--------------------------------|
| YES<br>LOW<br>YES<br>YES  | YES YES YES YES                |
| LOW<br>YES<br>YES         | YES<br>YES                     |
| YES<br>YES                | YES<br>YES                     |
| YES                       | YES                            |
|                           |                                |
| ??                        | YES                            |
|                           |                                |
| YES                       | ??                             |
| YES                       | ??                             |
| YES                       | YES                            |
| YES                       | YES                            |
| YES                       | ??                             |
| YES                       | ??                             |
| LOW                       | ??                             |
| YES                       | YES                            |
| YES                       | ??                             |
| YES                       | YES                            |
| YES                       | YES                            |
|                           | ??                             |
| YES                       | YES                            |
| YES<br>LOW                |                                |
|                           | YES<br>YES                     |

## Table 2 Notes:

## **X** Toxic to bees:

- YES—Active ingredients ranked by University of California Bee Precaution as any of the following: Level I, Level II, Toxic to honey bee brood, or Toxic to other bee species; or if LD<sub>s</sub>, honey bee test results were <11  $\mu$ g/bee in the relevant EPA ecological risk assessment.
- **LOW**—Active ingredients rated as III under Bee Precaution and with LD<sub>sn</sub> honey bee test results >  $11 \mu g$ /bee
- TOXIC TO LEPIDOPTERA Active ingredients listed as "yes" under "Toxic to Lepidoptera" include insecticides in groups listed by the Insecticide Resistance Action Committee (IRAC) with activity on Lepidoptera, or if independent studies found chronic or acute toxicity to monarch butterfly caterpillars at fieldrealistic concentrations. Studies on other butterfly species have not been considered.
- ?? UNKNOWN in any column means that the information was not readily available from the primary sources.

#### References

Getter, Kristin L., Bridget K. Behe, and Heidi Marie Wollaeger. 2016. "Comparative Consumer Perspectives on Eco-Friendly and Insect Management Practices on Floriculture Crops." HortTechnology 26 (1): 46-53. https://doi.org/10.21273/HORTTECH.26.1.46.

Halsch, Christopher A., Sarah M. Hoyle, Aimee Code, James A. Fordyce, and Matthew L. Forister. 2022. "Milkweed Plants Bought at Nurseries May Expose Monarch Caterpillars to Harmful Pesticide Residues." Biological Conservation 273 (September): 109699. https://doi.org/10.1016/j.biocon.2022.109699.

Khachatryan, H., and A. Rihn. 2020. "Are Consumers Interested in Ornamental Plants That Benefit Pollinator Insects?" University of Florida Extension, IFAS Pub. #FE997. https://edis. ifas.ufl.edu/publication/FE997.

Khachatryan, Hayk, Xuan Wei, and Alicia Rihn. 2021. "Pest Management Practices in the US Ornamental Horticulture Industry: Use of Neonicotinoid and Non-Neonicotinoid Insecticides." FE1101. University of Florida, UF/IFAS Extension. https://doi.org/10.32473/edis-FE1101-2021.

Wei, Xuan, Melinda Knuth, and Hayk Khachatryan. 2024. "The Role of Consumers' Knowledge of Native and Pollinator-Friendly Plants and Their Prioritization of Plant Characteristics in Purchase Decisions." HortScience: A Publication of the American Society for Horticultural Science 59 (7): 941–48. https://doi.org/10.21273/hortsci17637-23. Yue, Chengyan, Terry Hurley, and Neil O. Anderson. 2012. "Heterogeneous Consumer Preferences for Native and Invasive Plants: Evidence from Experimental Auctions." HortScience: A Publication of the American Society for Horticultural Science 47 (8): 1091-95. https://doi.org/10.21273/hortsci.47.8.1091.

## **Acknowledgments**

Funding provided by the Carroll Petrie Foundation. Additional support comes from Cascadian Farm, Ceres Trust, Cheerios, CS Fund, Disney Conservation Fund, The Dudley Foundation, The Edward Gorey Charitable Trust, Gaia Fund, General Mills, Hind Foundation, National Co+op Grocers, Nature Valley, Turner Foundation, Inc., Whole Foods Market and its vendors, and Xerces Society Members. AUTHOR: Sharon Selvaggio. REVIEWERS: Judy Fulton, Kirsten Hoffmann. EDITOR: Matthew Shepherd. DESIGNER: Sara Morris. PHOTO CREDITS: USDA-FS/flickr (cover top); Minnesota Native Landscapes (cover middle & mix tray on p. 2); Xerces Society / Jennifer Hopwood (cover bottom). Photographs remain under the copyright of the photographer.

© 2025 by The Xerces® Society for Invertebrate Conservation. Xerces® and 🗶® are trademarks registered in the U.S. Patent and Trademark Office. The Xerces Society is an equal opportunity employer and provider.